Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(2): e0277797, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36795783

RESUMO

Environmental responses are critical for plant growth and survival under different climate conditions. To elucidate the underlying biological mechanisms of environmental responses in Japanese cedar (Cryptomeria japonica D. Don), the annual transcriptome dynamics of common clonal trees (Godai1) planted at three different climate sites (Yamagata, Ibaraki, and Kumamoto Prefectures) were analyzed using microarrays. Both principal component analysis (PCA) and hierarchical clustering of the microarray data indicated the transition to dormant transcriptome status occurred earlier and the transition to active growth status later in the colder region. Interestingly, PCA also indicated that the transcriptomes of trees grown under three different conditions were similar during the growth period (June to September), whereas the transcriptomes differed between sites during the dormant period (January to March). In between-site comparisons, analyses of the annual expression profiles of genes for sites 'Yamagata vs. Kumamoto', 'Yamagata vs. Ibaraki', and 'Ibaraki vs. Kumamoto' identified 1,473, 1,137, and 925 targets exhibiting significantly different expression patterns, respectively. The total of 2,505 targets that exhibited significantly different expression patterns in all three comparisons may play important roles in enabling cuttings to adapt to local environmental conditions. Partial least-squares regression analysis and Pearson correlation coefficient analysis revealed that air temperature and day length were the dominant factors controlling the expression levels of these targets. GO and Pfam enrichment analyses indicated that these targets include genes that may contribute to environmental adaptation, such as genes related to stress and abiotic stimulus responses. This study provided fundamental information regarding transcripts that may play an important role in adaptation to environmental conditions at different planting sites.


Assuntos
Cryptomeria , Transcriptoma , Cryptomeria/fisiologia , Clima , Estações do Ano , Temperatura , Árvores/fisiologia
2.
BMC Plant Biol ; 22(1): 470, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36192701

RESUMO

BACKGROUND: Japanese larch (Larix kaempferi) is an economically important deciduous conifer species that grows in cool-temperate forests and is endemic to Japan. Kuril larch (L. gmelinii var. japonica) is a variety of Dahurian larch that is naturally distributed in the Kuril Islands and Sakhalin. The hybrid larch (L. gmelinii var. japonica × L. kaempferi) exhibits heterosis, which manifests as rapid juvenile growth and high resistance to vole grazing. Since these superior characteristics have been valued by forestry managers, the hybrid larch is one of the most important plantation species in Hokkaido. To accelerate molecular breeding in these species, we collected and compared full-length cDNA isoforms (Iso-Seq) and RNA-Seq short-read, and merged them to construct candidate gene as reference for both Larix species. To validate the results, candidate protein-coding genes (ORFs) related to some flowering signal-related genes ​were screened from the reference sequences, and the phylogenetic relationship with closely related species was elucidated. RESULTS: Using the isoform sequencing of PacBio RS ll and the de novo assembly of RNA-Seq short-read sequences, we identified 50,690 and 38,684 ORFs in Japanese larch and Kuril larch, respectively. BUSCO completeness values were 90.5% and 92.1% in the Japanese and Kuril larches, respectively. After comparing the collected ORFs from the two larch species, a total of 19,813 clusters, comprising 22,571 Japanese larch ORFs and 22,667 Kuril larch ORFs, were contained in the intersection of the Venn diagram. In addition, we screened several ORFs related to flowering signals (SUPPRESSER OF OVEREXPRESSION OF CO1: SOC1, LEAFY: LFY, FLOWERING Locus T: FT, CONSTANCE: CO) from both reference sequences, and very similar found in other species. CONCLUSIONS: The collected ORFs will be useful as reference sequences for molecular breeding of Japanese and Kuril larches, and also for clarifying the evolution of the conifer genome and investigating functional genomics.


Assuntos
Larix , DNA Complementar , Japão , Larix/genética , Filogenia , Transcriptoma
3.
PLoS One ; 15(3): e0229843, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32150571

RESUMO

Seasonal phenomena in plants are primarily affected by day length and temperature. The shoot transcriptomes of trees grown in the field and a controlled-environment chamber were compared to characterize genes that control annual rhythms and the effects of day length- and temperature-regulated genes in the gymnosperm Japanese cedar (Cryptomeria japonica D. Don), which exhibits seasonally indeterminate growth. Annual transcriptome dynamics were clearly demonstrated by principal component analysis using microarray data obtained under field-grown conditions. Analysis of microarray data from trees grown in a controlled chamber identified 2,314 targets exhibiting significantly different expression patterns under short-day (SD) and long-day conditions, and 2,045 targets exhibited significantly different expression patterns at 15°C (LT; low temperature) versus 25°C. Interestingly, although growth was suppressed under both SD and LT conditions, approximately 80% of the SD- and LT-regulated targets differed, suggesting that each factor plays a unique role in the annual cycle. The top 1,000 up-regulated targets in the growth/dormant period in the field coincided with more than 50% of the SD- and LT-regulated targets, and gene co-expression network analysis of the annual transcriptome indicated a close relationship between the SD- and LT-regulated targets. These results indicate that the respective effects of day length and temperature interact to control annual transcriptome dynamics. Well-known upstream genes of signaling pathways responsive to environmental conditions, such as the core clock (LHY/CjLHYb and CCA1/CjLHYa) and PEBP family (MFT) genes, exhibited unique expression patterns in Japanese cedar compared with previous reports in other species, suggesting that these genes control differences in seasonal regulation mechanisms between species. The results of this study provide new insights into seasonal regulation of transcription in Japanese cedar.


Assuntos
Cryptomeria/genética , Regulação da Expressão Gênica de Plantas , Estações do Ano , Temperatura , Transcriptoma , Cycadopsida/genética , Genes de Plantas/genética , Genes Reguladores , Árvores/genética , Árvores/metabolismo
4.
Front Plant Sci ; 9: 1322, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254658

RESUMO

A genome-wide association study (GWAS) was conducted on more than 30,000 single nucleotide polymorphisms (SNPs) in unrelated first-generation plus tree genotypes from three populations of Japanese cedar Cryptomeria japonica D. Don with genomic prediction for traits of growth, wood properties and male fecundity. Among the assessed populations, genetic characteristics including the extent of linkage disequilibrium (LD) and genetic structure differed and these differences are considered to be due to differences in genetic background. Through population-independent GWAS, several significant SNPs found close to the regions associated with each of these traits and shared in common across the populations were identified. The accuracies of genomic predictions were dependent on the traits and populations and reflected the genetic architecture of traits and genetic characteristics. Prediction accuracies using SNPs selected based on GWAS results were similar to those using all SNPs for several combinations of traits and populations. We discussed the application of genome-wide studies for C. japonica improvement.

5.
Tree Physiol ; 37(6): 733-743, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369644

RESUMO

In order to predict the effects of future atmospheric conditions on forest productivity, it is necessary to clarify the physiological responses of major forest tree species to high concentrations of ozone (O3) and carbon dioxide (CO2). Furthermore, intraspecific variation of these responses should also be examined in order to predict productivity gains through tree improvements in the future. We investigated intraspecific variation in growth and photosynthesis of Cryptomeria japonica D. Don, a major silviculture species in Japan, in response to elevated concentrations of O3 (eO3) and CO2 (eCO2), separately and in combination. Cuttings of C. japonica were grown and exposed to two levels of O3 (ambient and twice-ambient levels) in combination with two levels of CO2 (ambient and 550 µmol mol-1 in the daytime) for two growing seasons in a free-air CO2 enrichment experiment. There was no obvious negative effect of eO3 on growth or photosynthetic traits of the C. japonica clones, but a positive effect was observed for annual height increments in the first growing season. Dry mass production and the photosynthetic rate increased under eCO2 conditions, while the maximum carboxylation rate decreased. Significant interaction effects of eO3 and eCO2 on growth and photosynthetic traits were not observed. Clonal effects on growth and photosynthetic traits were significant, but the interactions between clones and O3 and/or CO2 treatments were not. Spearman's rank correlation coefficients between growth traits under ambient conditions and for each treatment were significantly positive, implying that clonal ranking in growth abilities might not be affected by either eO3 or eCO2. The knowledge obtained from this study will be helpful for species selection in afforestation programs, to continue and to improve current programs involving this species, and to accurately predict the CO2 fixation capacity of Japanese forests.


Assuntos
Dióxido de Carbono/análise , Cryptomeria/crescimento & desenvolvimento , Cryptomeria/fisiologia , Ozônio/análise , Fotossíntese , Japão , Fenótipo
7.
BMC Genomics ; 15: 219, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24649833

RESUMO

BACKGROUND: Forest trees have ecological and economic importance, and Japanese cedar has highly valued wood attributes. Thus, studies of molecular aspects of wood formation offer practical information that may be used for screening and forward genetics approaches to improving wood quality. RESULTS: After identifying expressed sequence tags in Japanese cedar tissue undergoing xylogenesis, we designed a custom cDNA microarray to compare expression of highly regulated genes throughout a growing season. This led to identification of candidate genes involved both in wood formation and later cessation of growth and dormancy. Based on homology to orthologous protein groups, the genes were assigned to functional classes. A high proportion of sequences fell into functional classes related to posttranscriptional modification and signal transduction, while transcription factors and genes involved in the metabolism of sugars, cell-wall synthesis and lignification, and cold hardiness were among other classes of genes identified as having a potential role in xylem formation and seasonal wood formation. CONCLUSIONS: We obtained 55,051 unique sequences by next-generation sequencing of a cDNA library prepared from cambial meristem and derivative cells. Previous studies on conifers have identified unique sequences expressed in developing xylem, but this is the first comprehensive study utilizing a collection of expressed sequence tags for expression studies related to xylem formation in Japanese cedar, which belongs to a different lineage than the Pinaceae. Our characterization of these sequences should allow comparative studies of genome evolution and functional genetics of wood species.


Assuntos
Cryptomeria/genética , Genoma de Planta , Transcriptoma , Análise por Conglomerados , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Japão , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Xilema/genética , Xilema/metabolismo
8.
Tree Physiol ; 34(8): 856-68, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24633653

RESUMO

To investigate the biological mechanism by which trees control the changes in microfibril (MF) orientation among secondary cell wall layers of conifer tracheids, we studied seasonal variation in the orientation of newly deposited MFs during tracheid cell wall development in Japanese cedar (Cryptomeria japonica D. Don) trees growing in Central Japan (36°36'N, 140°39'E). Sample blocks were repeatedly collected from four 16-year-old clones of different origins during the growing season of 2010 to investigate the hypotheses that changes in cellulose MF orientation between wall layers exhibited seasonal and clonal differences. The progressive change in the orientation of newly deposited MFs on the primary and secondary cell wall layers of tracheids was detected by field-emission-scanning electron microscopy. Tracheid production and differentiation was studied by light microscopy. We observed a decreasing trend in the orientation of deposited MFs from earlywood to latewood in the S2 and S1 layers, where MFs appeared in a Z-helix. In contrast, no seasonal pattern in the orientation of the MFs in the S-helix was observed. Minor clonal variation was observed in the phenology of tracheid production and differentiation. We concluded that a seasonal decreasing trend in the orientation of the MFs in the Z-helix in S1 and S2 was present, whereas the MFs in other layers exhibited minor random variations. Thus, the orientation of the MFs in S2 was affected by seasonal factors, whereas the MFs in other layers were more intrinsically controlled. The within-ring variations in the MF orientation and thus the resulting average MF angle might also be related to genotypic differences in the tracheid production and differentiation rate. However, our results do not exclude other intrinsic and environmental regulations in the change in MF orientation, which remains a topic for future studies.


Assuntos
Parede Celular , Celulose/metabolismo , Cryptomeria/fisiologia , Genótipo , Microfibrilas/metabolismo , Estações do Ano , Xilema/crescimento & desenvolvimento , Cryptomeria/genética , Japão , Árvores/fisiologia , Madeira/crescimento & desenvolvimento , Xilema/citologia
9.
PLoS One ; 8(11): e79866, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260312

RESUMO

Genome-wide association studies (GWAS) are an alternative to bi-parental QTL mapping in long-lived perennials. In the present study, we examined the potential of GWAS in conifers using 367 unrelated plus trees of Cryptomeria japonica D. Don, which is the most widely planted and commercially important tree species in Japan, and tried to detect significant associations between wood property traits and quantity of male strobili on the one hand, and 1,032 single nucleotide polymorphisms (SNPs) assigned to 1,032 genes on the other. Association analysis was performed with the mixed linear model taking into account kinship relationships and subpopulation structure. In total, 6 SNPs were found to have significant associations with the variations in phenotype. These SNPs were not associated with the positions of known genes and QTLs that have been reported to date, thus they may identify novel QTLs. These 6 SNPs were all found in sequences showing similarities with known genes, although further analysis is required to dissect the ways in which they affect wood property traits and abundance of male strobili. These presumptive QTL loci provide opportunities for improvement of C. japonica, based on a marker approach. The results suggest that GWAS has potential for use in future breeding programs in C. japonica.


Assuntos
Cryptomeria/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Madeira/genética , Estudo de Associação Genômica Ampla/métodos , Desequilíbrio de Ligação/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...